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The dimensionlessness of chemical kinetic equation
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The techniques of dimensional analysis and scaling of the chemical kinetic equation are
investigated in this paper. Along with several examples, the procedure to reduce problems to
the dimensionless form is described and a general method about selecting the characteristic
scales is given. Our results show that if the difference between the number of the parameters in
the dimensional equation and in the dimensionless equation is equal to the rank of dimension
matrix plus one, then the selection of scales is suitable and the dimensionless equation is one
of the simplest forms.
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1. Introduction

The techniques of dimensional analysis and scaling are very important and useful
in nonlinear dynamics. Dimensional analysis permits us to understand the dimensional
relationships of the quantities in the equations and the resulting implications of dimen-
sional homogeneity. Scaling can help us understand the magnitude of the terms that
appear in the model equations by comparing the quantities to intrinsic reference quanti-
ties that appear naturally in the physical situation. Nondimensionalizing the equation can
reduce the number of parameters by lumping them together into dimensionless groups.
This reduction always simplifies the bifurcation analysis of nonlinear chemical dynam-
ics. There have been many publications devoted to this problem [1–6]. However, how
to make out dimensionlessness of a chemical kinetic equation is still a difficult problem
existing in kinetics. It is the purpose of this paper to give a general procedure by which
chemical kinetic equations can be transformed into the dimensionless forms and present
a simple method to decide whether the dimensionless form is the simplest form or not.
Before making a formal statement, it is necessary to introduce some definitions.

2. Definitions

It is well known that the basic principle of dimensional analysis and scaling is
that equations must be dimensionally homogeneous. According to this principle it is
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generally true that a physical law, such as

f (q1, q2, . . . , qm) = 0 (1)

is equivalent to a physical law F(λ1, λ2, . . . , λi) = 0. Here, q1, q2, . . . , qm are the
dimensioned quantities and λ1, λ2, . . . , λi are the dimensionless quantities which can
be formed from q1, q2, . . . , qm. In general, the dimensions of qi , denoted by [qi], can
be written in terms of the fundamental dimensions as [qi] = L

a1i
1 L

a2i
2 · · ·Lani

n for some
choice of exponents a1i , a2i , . . . , ani , where L1, . . . , Ln are fundamental dimensions.

Definition 2.1. If [qi] = L
a1i
1 L

a2i
2 · · ·Lani

n = 1, then qi is said to be dimensionless.

Definition 2.2. The n×m matrix

D =



a11 . . . a1m

a21 . . . a2m
...

...

an1 . . . anm


 (2)

is called the dimension matrix if the elements in the ith column give the exponents for
qi in terms of the powers of L1, . . . , Ln.

Any fundamental dimension Li has the property that its units can be changed upon
multiplication by the appropriate conversion factor εi > 0 to obtain L∗i in a new system
of units. This means that if [q] = L

a1
1 L

a2
2 · · ·Lan

n , then q∗ = ε
a1
1 ε

a2
2 · · · εann q gives q in the

new system of units. The physical law (1) is said to be independent of the units chosen to
express the dimensional quantities q1, q2, . . . , qm, or unit free, if f (q1, q2, . . . , qm) = 0
and f (q∗1 , q

∗
2 , . . . , q

∗
m) = 0 are equivalent physical laws. More formally:

Definition 2.3. The physical law (1) is unit free if for all choices of real numbers
ε1, . . . , εn, with εi > 0, i = 1, . . . , n, we have f (q∗1 , q

∗
2 , . . . , q

∗
m) = 0 if and only

if f (q1, q2, . . . , qm) = 0.

It is necessary to distinguish the word “unit” from the word “dimension”. By units
we mean specific physical units like seconds, hours, days, and years; all of these units
have dimensions of time. Similarly, grams, kilograms, etc., are units of the dimension
mass. For example, acceleration, as indicated by its typical unit cm/sec2, has dimension
“length/time2”. In simple chemical kinetic equations, time T and concentration C are
often taken to be the fundamental dimensions. For instance, the dimension of the second-
order rate constant is C−1T −1.

Definition 2.4. Let x be a variable and construct a combination of parameters xc which
has the same dimension as x. If the new variable x̄ = x/xc is a dimensionless variable,
xc is called characteristic scale or intrinsic reference of x.
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3. Theorem

Before giving our general results we first discuss an example: the dimensionless-
ness of a simple chemical reaction model. For simplicity our models are all in a thermo-
dynamically closed system.

3.1. Example 1: The two-variable autocatalator model [7–9]

This model considers the conversion of chemical precursor P to a final product C
via two reactive intermediates A and B through the sequence of steps

P→ A, rate = k0p,

A→ B, rate = kua,

A+ 2B→ 3B, rate = k1ab
2,

B→ C, rate = k2b.

With a constant precursor concentration p0, the rate equations for the two intermediates
are

da

dt
= k0p0 − k1ab

2 − kua,

db

dt
= k1ab

2 + kua − k2b.

(3)

Equation system (3) involves three variables (a, b, t) and five parameters given by the
four rate constants (k0, ku, k1, k2) and p0. To put (3) into a dimensionless form we make
following six-step procedure for nondimensionalization, which can be used for a large
class of chemical kinetic problems.

Step I. Choose fundamental dimensions. In present instance we choose time T and
concentration C as fundamental dimensions.

Step II. List all parameters and variables together with their dimensions in terms of the
fundamental dimensions, which is called dimension matrix. For present problem, we
have the following list:

Variables Dimensions
Dependent variable a, b C

Independent variable t T

Parameters
Constant concentration p0 C

First-order rate constants k0, ku, k2 T −1

Third-order rate constant k1 T −1C−2
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Thus, the dimension matrix is

t a b p0 k0 ku k1 k2

T

C

(
1 0 0 0 −1 −1 −1 −1
0 1 1 1 0 0 −2 0

)
.

(4)

Step III. Obtain dimensionless variables. It is obvious to see that the rank r of the
dimension matrix (4) is clearly 2. If λ = tα1aα2bα3p

α4
0 k

α5
0 kα6

u k
α7
1 k

α8
2 is a dimensionless

variable for some choice of α1, . . . , α8 then

[λ] = T α1Cα2Cα3Cα4T −α5T −α6
(
T −1C−2)α7

T −α8 = T α1−α5−α6−α7−α8Cα2+α3+α4−2α7 = 1.

Therefore the exponents must vanish and we obtain two homogeneous linear equations
for α1, . . . , α8, namely

α1 − α5 − α6 − α7 − α8 = 0,

α2 + α3 + α4 − 2α7 = 0.
(5)

The coefficient matrix of linear equation system (5) is just the dimension matrix (4).
From elementary matrix theory, the number of independent solutions equals the number
of unknowns minus the rank of the matrix. Each independent solution of (5) will give
rise to a dimensionless variable. Therefore there are six dimensionless variables that can
be formed from t, a, b, p0, k0, ku, k1 and k2. We can choose α3, α4, . . . , α8 arbitrarily
and write



α1

α2

α3

α4

α5

α6

α7

α8



= α3




0
−1
1
0
0
0
0
0



+ α4




0
−1
0
1
0
0
0
0



+ α5




1
0
0
0
1
0
0
0



+ α6




1
0
0
0
0
1
0
0



+ α7




1
2
0
0
0
0
1
0



+ α8




1
0
0
0
0
0
0
1




which have six independent solutions given as

λ1 = b

a
, λ2 = p0

a
, λ3 = tk0, λ4 = tku, λ5 = ta2k1, λ6 = tk2. (6)

Step IV. Obtain characteristic scales. According to definition 2.1 and noting that char-
acteristic scales could only be the parameters or their combinations we can obtain the
possible characteristic scales directly from the λi (i = 1, . . . , 6). From (6) it is easy
to obtain the possible characteristic time scales (tc): 1/k0, 1/ku and 1/k2, and the
possible concentration scale (xc): p0. Characteristic scales can be obtained not only
from λi directly but also from their combinations indirectly. Hence, the possible con-
centration scales can also be: (k0/k1)

1/2, (ku/k1)
1/2 and (k2/k1)

1/2, which are obtained
from λ5/λ3, λ5/λ4 and λ5/λ6, respectively.
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Step V. Obtain dimensionless equation. Using Greek letters for dimensionless variables
we have α = a/xc, β = b/xc and τ = t/tc. If we select tc = 1/k0, xc = (k0/k1)

1/2 and
substitute them into dimensional equation system (3), then (3) can be cast as follows:

dα

dτ
=µ− αβ2 − ku

k0
α,

(7)
dβ

dτ
= αβ2 + ku

k0
α − k2

k0
β

where µ = (k1/k0)
1/2p0. The ratios, k2/k0 and ku/k0 are dimensionless because k2, ku

and k0 are all first-order rate constants. By setting k2/k0 = C1 and ku/k0 = C2, equation
system (7) becomes:

dα

dτ
=µ− αβ2 − C2α,

(8)
dβ

dτ
= αβ2 + C2α − C1β.

Equation system (8) involves three variables, α, β and τ , and three parameters, C1, C2

and µ. This is at least a more economical representation than the full dimensional forms
where we have five parameters – the rate constants and p0. Some of the dimensionless
forms of the rate equation for the different selections of xc and tc are listed in table 1.

Here the symbol � denotes the difference between the number of parameters in
dimensional equation and in the dimensionless equations. The actual expressions of µ
and Ci in the table are not the same for the different scales though their letters are the
same in form. From table 1 it can be found that the maximum of � is equal to r+1. The
dimensionless form is said to be one of the simplest forms if its number of parameters is
the least, which means that its � is the biggest. Parameters in the dimensionless equation
are all dimensionless quantities. This is another advantage of the present method because
we need not carry out dimensional analysis to them.

Step VI. Check whether the equality � = r + 1 is satisfied or not. If it is satisfied then
the choice of characteristic scales is said to be suitable for the dimensionlessness of the
equation and the dimensionless form is one of the simplest forms. If � = r + 1 does
not hold, we should select new characteristic scales. In other words, we should return
to Step IV and start from it to continue the procedure. We generalize these results as
following theorem.

3.2. Theorem

The dimensionless kinetic equation of a chemical reaction system is one of the
simplest dimensionless forms if the equality � = r + 1 holds.

Proof. The kinetic equation of a chemical reaction system can be generally written as

dx

dt
= k0x0 + k1x + k2x

2 + k3x
3, (9)
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Table 1
Dimensionless rate equation of the two-variable autocatalator.

No. tc xc Dimensionless form �

1 1/k0 (k0/k1)
1/2 dα/dτ = µ− αβ2 − C1α

dβ/dτ = αβ2 + C1α − C2β 2
2 1/k0 (ku/k1)

1/2 dα/dτ = µ− C1αβ
2 − C1α 2

dβ/dτ = C1αβ
2 + C1α − C2β

3 1/k0 (k2/k1)
1/2 dα/dτ = µ− C1αβ

2 − C2α 2
dβ/dτ = C1αβ

2 + C2α − C1β

4 1/ku (k0/k1)
1/2 dα/dτ = µ− C1αβ

2 − α 2
dβ/dτ = C1αβ

2 + α − C2β

5 1/ku (ku/k1)
1/2 dα/dτ = µ− αβ2 − α 3

dβ/dτ = αβ2 + α − C1β

6 1/ku (k2/k1)
1/2 dα/dτ = µ− C1αβ

2 − α 3
dβ/dτ = C1αβ

2 + α − C1β

7 1/k2 (k0/k1)
1/2 dα/dτ = µ− C1αβ

2 − C2α 2
dβ/dτ = C1αβ

2 + C2α − β

8 1/k2 (ku/k1)
1/2 dα/dτ = µ− C1αβ

2 − C1α 3
dβ/dτ = C1αβ

2 + C1α − β

9 1/k2 (k2/k1)
1/2 dα/dτ = µ− αβ2 − C1α 3

dβ/dτ = αβ2 + C1α − β

10 1/k0

(
k0ku

k1k2

)1/2
dα/dτ = µ− C1αβ

2 − C2α 1

dβ/dτ = C1αβ
2 + C2α − C3β

where x0 is a constant concentration, ki (i = 0, . . . , 3) are the rate constants. Equa-
tion (9) is unit free and can be expressed in the form

f (q1, q2, . . . , qm) = 0, m = 7. (10)

If we select concentration C and time T as fundamental dimensions, then

[qj ] = L
a1j
1 L

a2j
2 , j = 1, 2, . . . , 7, (11)

where L1 and L2 are the fundamental dimensions. The dimension matrix is

D =
(
a11 a12 a13 a14 a15 a16 a17

a21 a22 a23 a24 a25 a26 a27

)
, rankD = r = 2, (12)

from which we can construct a set of equations

Dy = 0. (13)

Obviously, equation system (13) has m− r = 5 linearly independent solutions:

ys = (ys1, ys2, . . . , ysm)
T, s = 1, 2, . . . , 5, m = 7. (14)
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At first we prove that λs = ∏m
j=1 q

ysj
j (s = 1, . . . , 5) are independent dimension-

less quantities. By the use of equations (11) we have

[λs] =
m∏

j=1

[qj ]ysj =
m∏

j=1

(
2∏

i=1

L
aij
i

)ysj

=
2∏

i=1

L

∑m
j=1 aij ysj

i . (15)

From (13) and (14), we obtain

m∑
j=1

aij ysj = 0, i = 1, 2, s = 1, 2, . . . , 5. (16)

Substituting (16) into (15) gives

[λs] =
2∏

i=1

L0
i = 1, s = 1, 2, . . . , 5.

Therefore λs (s = 1, 2, . . . , 5) are independent dimensionless quantities according to
definition 2.1.

Secondly, we prove that equation (10) is equivalent to the dimensionless equation

F(λ1, λ2, . . . , λ5) = 0. (17)

We know that equation system (13) has 5 independent solutions. Without loss of any
generality, we assume the first two columns of D are linearly independent. Then these 5
independent solutions can be expressed as



y1 = (a1, a2, 1, 0, 0, 0, 0),

y2 = (b1, b2, 0, 1, 0, 0, 0),

y3 = (c1, c2, 0, 0, 1, 0, 0),

y3 = (d1, d2, 0, 0, 0, 1, 0),

y4 = (e1, e2, 0, 0, 0, 0, 1).

(18)

It has been proved that 


λ1 = q
a1
1 q

a2
2 q3,

λ2 = q
b1
1 q

b2
2 q4,

λ3 = q
c1
1 q

c2
2 q5,

λ4 = q
d1
1 q

d2
2 q6,

λ5 = q
e1
1 q

e2
2 q7

(19)

are independent dimensionless quantities. From (19) we can obtain

q3 = λ1q
−a1
1 q

−a2
2 , q4 = λ2q

−b1
1 q

−b2
2 , q5 = λ3q

−c1
1 q

−c2
2 ,

q6 = λ4q
−d1
1 q

−d2
2 , q7 = λ5q

−e1
1 q

−e2
2 .

(20)
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Substituting (20) into (10) and defining

g(q1, q2, λ1, λ2, λ3, λ4, λ5)

≡ f
(
q1, q2, λ1q

−a1
1 q

−a2
2 , λ2q

−b1
1 q

−b2
2 , λ3q

−c1
1 q

−c2
2 , λ4q

−d1
1 q

−d2
2 , λ5q

−e1
1 q

−e2
2

)
(21)

we have that

g(q1, q2, λ1, λ2, λ3, λ4, λ5) = 0 (22)

is equivalent to (10). Since (10) is unit free, it easily follows that (22) is unit free.
Therefore, according to definition 2.3 and noting that λ∗i = λi (i = 1, 2, . . . , 5) under
any change of units, we have

g
(
q∗1 , q

∗
2 , λ1, λ2, λ3, λ4, λ5

) = 0, (23)

where

q∗1 = ε
a11
1 ε

a21
2 q1, q∗2 = ε

a11
1 ε

a21
2 q2 (24)

for every choice of the conversion factors ε1, ε2 > 0. Equation system (24) is equiva-
lent to (22). The factors ε1, ε2 can be selected so that q∗1 = q∗2 = 1. We are able to make
this choice because

1 = ε
a11
1 ε

a21
2 q1, 1 = ε

a11
1 ε

a21
2 q2 (25)

implies {
a11 ln ε1 + a21 ln ε2 = − ln q1,

a12 ln ε1 + a22 ln ε2 = − ln q2.
(26)

Since we have assumed that the first two columns of the dimension matrix D are linearly
independent, the system (26) has a unique solution ln ε1 and ln ε2, from which ε1 and ε2

can be determined to satisfy (25). Therefore, equation (23) gives

g(1, 1, λ1, λ2, λ3, λ4, λ5) = 0. (27)

If we define

F(λ1, λ2, λ3, λ4, λ5) ≡ g(1, 1, λ1, λ2, λ3, λ4, λ5) (28)

then F(λ1, λ2, λ3, λ4, λ5) = 0 is equivalent to (10): f (q1, q2, q3, q4, q5, q6, q7) = 0. By
selecting xc and tc as the characteristic scales of concentration and time, respectively, the
chemical reaction kinetic equation (9) can be transformed into following dimensionless
form:

dα

dτ
= C1 + C2α + C3α

2 + C4α
3, (29)

where α = x/xc, τ = t/tc, C1 = tck0x0/xc, C2 = k1tc, C3 = k2tcxc and C4 = k3tcx
2
c

are all dimensionless quantities. Equation (29) also can be expressed as

G(α, τ, C1, C2, C3, C4) = 0. (30)
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In order to satisfy the above conclusion, i.e., f (q1, q2, q3, q4, q5, q6, q7) = 0 is equiva-
lent to F(λ1, λ2, λ3, λ4, λ5) = 0, one of the dimensionless parameters Ci (i = 1, . . . , 4)
in (30) must be equal to unity. The selection of Ci (i = 1, . . . , 4) = 1 can be made
arbitrarily. Here, we choose C2 = 1 and define

g(α, τ, C1, C3, C4) ≡ G(α, τ, C1, 1, C3, C4). (31)

Thus g(α, τ, C1, C3, C4) = 0 is equivalent to f (q1, q2, q3, q4, q5, q6, q7) = 0. Further
simplification of equation (31) can be made for some special selections of Ci . Here we
select C3 = 1. (We can also choose C1 = 1 or C4 = 1, which does not affect our final
conclusion.) By solving simultaneous equations{

C2 = 1 = k1tc,

C3 = 1 = k2tcxc

we can obtain 

tc = 1

k1
,

xc = k1

k2
.

In this case equation (29) becomes

dα

dτ
= C1 + α + α2 + C4α

3. (32)

It can be seen that the number of parameters has been reduced from five (x0, k0, k1, k2, k3)

to two (C1, C2). Parameters in (32) cannot be further decreased, so equation (32) is
one of the simplest forms. The difference between the number of parameters in the
dimensional equation (9) and in the dimensionless equation (32) satisfies the equality
� = r + 1, where � = 5− 2 = 3 and r = 2. The proof of the theorem is complete. �

4. Applications

4.1. Example 2:The three-variable autocatalator model [11]

This model considers the conversion of chemical precursor P to final product D via
three intermediates A, B and C. The reaction model is as follows:

P→ A, rate = k0p0,

P+ C→ A+ C, rate = kcpc,

A→ B, rate = kua,

A+ 2B→ 3B, rate = k1ab
2,

B→ C, rate = k2b,

C→ D, rate = k3c.
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With a constant precursor concentration p0, the rate equations for the three intermediates
are:

da

dt
= k0p0 + kcp0c − kua − k1ab

2,

db

dt
= kua + k1ab

2 − k2b,

dc

dt
= k2b − k3c.

(33)

The process of obtaining suitable dimensionless forms for the present model is similar
to the example 1. The dimension matrix is

t a b c p0 k0 kc ku k1 k2 k3

T

C

(
1 0 0 0 0 −1 −1 −1 −1 −1 −1
0 1 1 1 1 0 −1 0 −2 0 0

)

whose rank r = 2. So there are nine dimensionless variables:

λ1 = a−1b, λ2 = a−1c, λ3 = a−1p0, λ4 = tk0, λ5 = takc,

λ6 = tku, λ7 = ta2k1, λ8 = tk2, λ9 = tk3.

If we select xc = (ku/k1)
1/2 which is obtained from (λ6/λ5) and tc = 1/ku which is

from λ6, then the dimensionless form of the equation system (33) becomes

dα

dτ
=µ+ C1γ − αβ2 − α,

dβ

dτ
= α + αβ2 − C2β,

dγ

dτ
=C2β − C3γ,

(34)

where µ = (k2
0k1/k

3
u)

1/2p0, C1 = kcp0/ku, C2 = k2/ku, C3 = k3/ku.
The parameters have been reduced from seven (p0 and six rate constants) to four.

The difference between dimensional parameters and dimensionless parameters is three
which is just equal to r + 1. So the selection of scales are reasonable in terms of the
previous section. Our results can also be found in other reactions such as the parallel
and consecutive autocatalator system [12], the surface reaction system [13] and nonau-
tocatalytic reaction system [14]. It should be indicated that the selection of characteristic
scale can be different for different quantities that have the same dimension. For exam-
ple, we still select time scale as tc = 1/ku while the concentration scales are selected as
follows: xc(A) = (k2/k1)

1/2, xc(B) = (ku/k1)
1/2, xc(C) = (kuk

2
2/k1k

2
3)

1/2 which are ob-
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tained from λ6λ5/λ
2
7, λ6/λ5 and λ2

8λ6/λ
2
7λ5, respectively. Then the dimensionless form

of the rate equation system (33) with this selection is given:

dα

dτ
=C1 + C2γ − αβ2 − α,

C3
dβ

dτ
= α + αβ2 − β,

C4
dγ

dτ
= β − γ,

(35)

where C1 = (k2
0k1/k

2
2ku)

1/2p0, C2 = kcp0/k3, C3 = ku/k2 and C4 = ku/k3. Equation
system (35) is the same form as the Peng’s [15]. It is required to point out here that
the selection of characteristic scale may be different but scales must come from the
dimensionless variables λi or their combination, such as λ6λ5/λ

2
7.

4.2. Example 3: Salnikov model [16–18]

Before making dimensional analysis we will at first give some basic descriptions
about this model. The Salnikov scheme consists of only two steps and both of these are
first order:

P→ A, rate = k0p, p(t = 0) = p0,

A→ B+ heat, rate = k1(T )a, T (t = 0) = Ta.

The first step involves a pool chemical reactant whose concentration is regarded as con-
stant. This step is also assumed to be virtually thermoneutral so k0 does not vary with
temperature. The second step is exothermic and its rate constant has an Arrhenius form.
The equations for mass balance and energy conservation for this system are

da

dt
= k0p0e−k0t − k1(T )a (mass balance), (36)

Vω
dT

dt
=QV k1(T )a − Sχ(T − Ta) (energy balance). (37)

Here ω is the heat capacity per unit volume, S the surface area, Q the reaction exother-
micity, χ the surface heat transfer coefficient and V the volume of a well-stirred closed
vessel sitting in a heat bath which has a temperature Ta. For practical purpose we usually
take �T = T − Ta as our variable instead of T so the energy balance equation can be
written as

Vω
d�T

dt
= QV k1(�T )a − Sχ�T. (38)

Step I. Choose fundamental dimensions. Time (t), length (L), temperature (-) and
energy (e) are selected as fundamental dimensions.
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Step II. The dimension matrix is

χ S T Ta E Q V k1 a t �T R ω

t (time)
L (length)
- (temp.)
e (energy)



−1 0 0 0 0 0 0 −1 0 1 0 0 0
−2 2 0 0 0 0 3 0 −3 0 0 0 −3
−1 0 1 1 0 0 0 0 0 0 1 −1 −1
1 0 0 0 1 1 0 0 0 0 0 1 1


 (39)

where m = 13, r = 4.

Step III. Obtain dimensionless variables. Because the rank r = 4 so there are nine
(m − r = 9) dimensionless quantities. The practical calculations are similar to the
example 1:

λ1 = χE−1a−2/3t (�T ), λ2 = Sa2/3, λ3 = T (�T )−1, λ4 = Ta(�T )−1,

(40)
λ5 = E−1Q, λ6 = V a, λ7 = kt, λ8 = E−1(�T )R, λ9 = E−1a−1(�T )ω.

Step IV. Obtain characteristic scales. In terms of the equations (40), the characteristic
scales of variables can be selected as follows:

(1) time scales tc = ωV /χS (which is obtained from λ1λ2/λ6λ9);

(2) concentration scales xc = χSRT 2
a /(EQV k1(Ta)) (obtained from λ1λ2λ

2
4λ8/

(λ5λ6λ7));

(3) temperature scale Tc = E/R (from λ3λ8 or λ4λ8);

(4) temperature rise scale (�T )c = RT 2
a E
−1 (from λ2

4λ8).

Step V. Obtain dimensionless equations. At first we carry out dimensionlessness of
the Arrhenius rate law. It is well known that k1(T ) = A exp(−E/RT ) and k1(Ta) =
A exp(−E/RTa). Using Greek letter θ as dimensionless temperature rise and γ as di-
mensionless temperature we have

θ = �T

(�T )c
= E(T − Ta)

RT 2
a

and γ = RTa

E
.

Then k1(T ) can be expressed as

k1(T ) = k1(Ta) exp

[
θ

1+ γ θ

]
. (41)

Substitution of α = a/xc, τ = t/tc and equation (41) into (36) and (38) gives

dα

dτ
=C1 exp(−C2τ)− C3α exp

[
θ

1+ γ θ

]
,

(42)
dθ

dτ
= α exp

[
θ

1+ γ θ

]
− θ.
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Here

C1 = k0ωEQk1(Ta)V
2

R(χSTa)2
, C2 = k0ωV

χS
and C3 = k1(Ta)ωV

χS
.

Step VI. Check if the equality � = r + 1 is satisfied or not. Equation system (42)
involves three variables as well as four parameters C1, C2, C3 and γ . The number of
parameters has been decreased from nine (χ, S, Ta,Q, V, k1, k0, p0, ω) to four. The
difference � is five which is just equal to r + 1 (here r = 4). Therefore the selection
of the characteristic scales is reasonable and (42) is one of the simplest dimensionless
forms.

5. Conclusion

The main purpose of transforming a dimensional equation into an equivalent di-
mensionless form is to decrease the numbers of parameters in the equation and drasti-
cally simplify the mathematical models. Thus the dynamical behaviour of the reaction
equation is not determined primarily by the absolute values of all the rate constants,
but only by one or more ratios of them. This reduction of parameters is particularly
important in the studying of nonlinear chemical dynamics. In present paper we have
demonstrated the process of dimensional analysis and have given a general method to
nondimensionalize the kinetic equation of a chemical reaction system. The key to the
transforming a dimensional equation into dimensionless form lies in selecting character-
istic scales. The scales can be obtained not only from the dimensionless quantities but
also from their combinations. Whether the selections of scales are suitable or not depend
on the difference �. We have proved that if the equality � = r + 1 holds the selections
of characteristic scales is said to be reasonable and the dimensionless equation is one
of the simplest forms. Therefore the equality � = r + 1 can be taken as a necessary
condition for selecting characteristic scales. Our result is not only available in chemical
systems but also available in the other fields, for example, the dimensionlessness of the
ecological model [19].
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